Modeling the zebrafish segmentation clock's gene regulatory network constrained by expression data suggests evolutionary transitions between oscillating and nonoscillating transcription.

نویسندگان

  • Jamie Schwendinger-Schreck
  • Yuan Kang
  • Scott A Holley
چکیده

During segmentation of vertebrate embryos, somites form in accordance with a periodic pattern established by the segmentation clock. In the zebrafish (Danio rerio), the segmentation clock includes six hairy/enhancer of split-related (her/hes) genes, five of which oscillate due to negative autofeedback. The nonoscillating gene hes6 forms the hub of a network of 10 Her/Hes protein dimers, which includes 7 DNA-binding dimers and 4 weak or non-DNA-binding dimers. The balance of dimer species is critical for segmentation clock function, and loss-of-function studies suggest that the her genes have both unique and redundant functions within the clock. However, the precise regulatory interactions underlying the negative feedback loop are unknown. Here, we combine quantitative experimental data, in silico modeling, and a global optimization algorithm to identify a gene regulatory network (GRN) designed to fit measured transcriptional responses to gene knockdown. Surprisingly, we find that hes6, the clock gene that does not oscillate, responds to negative feedback. Consistent with prior in silico analyses, we find that variation in transcription, translation, and degradation rates can mediate the gain and loss of oscillatory behavior for genes regulated by negative feedback. Extending our study, we found that transcription of the nonoscillating Fgf pathway gene sef responds to her/hes perturbation similarly to oscillating her genes. These observations suggest a more extensive underlying regulatory similarity between the zebrafish segmentation clock and the mouse and chick segmentation clocks, which exhibit oscillations of her/hes genes as well as numerous other Notch, Fgf, and Wnt pathway genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Intercellular Coupling Regulates the Period of the Segmentation Clock

BACKGROUND Coupled biological oscillators can tick with the same period. How this collective period is established is a key question in understanding biological clocks. We explore this question in the segmentation clock, a population of coupled cellular oscillators in the vertebrate embryo that sets the rhythm of somitogenesis, the morphological segmentation of the body axis. The oscillating ce...

متن کامل

Delayed coupling theory of vertebrate segmentation.

Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's c...

متن کامل

Comparison between Timelines of Transcriptional Regulation in Mammals, Birds, and Teleost Fish Somitogenesis

Metameric segmentation of the vertebrate body is established during somitogenesis, when a cyclic spatial pattern of gene expression is created within the mesoderm of the developing embryo. The process involves transcriptional regulation of genes associated with the Wnt, Notch, and Fgf signaling pathways, each gene is expressed at a specific time during the somite cycle. Comparative genomics, in...

متن کامل

A Window into the Workings of the Segmentation Clock

Rhythms underlie a range of biological phenomena, from circadian clocks to cellular responses to DNA damage. The formation of body parts is no exception. During development, the cyclical expression of genes is crucial for regulating the sequential formation of body segments called somites in vertebrates, including zebrafish. Members of the hes/her family of genes are expressed in a rhythmic fas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 197 2  شماره 

صفحات  -

تاریخ انتشار 2014